Heart Failure and Sleep Apnea

William G. Cotts M.D.
Associate Professor of Medicine
Division of Cardiology
Northwestern University

But the tigers come at night,
With their voices soft as thunder,
As they tear your hope apart,
As they turn your dream to shame.”

From “I Dreamed a Dream,” Les Miserables

Sleep Apnea and Heart Failure

• Sleep Architecture
• Diagnosis
• Treatment

Normal sleep

• What is REM sleep?
• What is NREM sleep?
• Predominant physiological processes that are different from wakefulness?
REM
- Low voltage cortical EEG
- REM
- Muscle atonia
- Vivid dreams
- Spontaneous waking occurs most often
- Difficult to wake someone up

REM
- Irregular breathing patterns
- Increased threshold for a ventilatory response
- Reduction in ventilatory responsiveness to chemostimulation
- Skeletal muscle atonia
- Increases in pCO2

REM
- Decrease in central respiratory drive
- Increase in CO2
- Sleep is under metabolic control
- Parasympathetic tone increases
- Sympathetic tone decreases
- Heart rate, blood pressure, stroke volume decrease

Intermittent Arousals
- Reinstitution of wakefulness drive to breathe
- Augmented ventilation
- Abrupt increases in HR and BP
- Increases in SNA
- Therefore, arousal in a distinct transient state of heightened respiratory and cardiovascular activity
Physiology of Normal Sleep

- Wakefulness to NREM sleep
- Withdrawal of nonchemical wakefulness drive to breathe
- Minute ventilation decreases
- CO2 increases

Definitions

- Apnea—Complete cessation of airflow for at least 10 seconds
- Hypopnea—Decrease in oronasal airflow by at least 50% associated with a 4% decrease in arterial saturation
- AHI—Apnea Hypopnea index. Combined episodes per hour.

Clinical Diagnosis

- Symptoms of daytime somnolence, snoring, witnessed apneas, generalized poor sleep.
- Questionnaires such as the Berlin questionnaire
Prevalence of Sleep Apnea and Heart Failure

- Sleep apnea—10% prevalence in the general population
- Heart failure—2% prevalence
- 11%-38% had OSA
- 33%-42% had CSA

Obstructive Sleep Apnea Can Cause Heart Failure

- Increased afterload due to negative intrathoracic pressure
- Hypoxia
- Increased sympathetic tone
- Increased catecholamines
- Vascular endothelial dysfunction

Can Central Sleep Apnea Exacerbate Heart Failure?

- Hypoxia
- Increased sympathetic tone
- Increases in heart rate
- Increases in blood pressure
- Arrhythmias

Normal Hemodynamic Values

- RA 5-8 mmHg
- RV 25/5 mmHg
- PA 25/10 mmHg
- PCWP 10 mmHg
- CI 2.5-3.5 l/min/m²

Case Study

- 75 year old man with long history of an LVEF of <20%
- Fatigued walking 2-3 blocks
- Very poor sleep over 2 weeks. No orthopnea or PND
- Exam: SBP=80, HR 90, Clear lungs, + JVD, + S3, No edema, BNP 2400
- Hemodynamics?
Hemodynamics

- RA 13mmHg
- RV 60/20mmHg
- PA 60/30mmHg
- PCWP 30mmHg
- CI 1.4 l/min/m²

How CHF May Induce Central Sleep Apnea

- Elevated PCWP causes hyperventilation through pulmonary vagal irritant receptors
- CO₂ decreases
- Triggers apneas

PCWP = pulmonary capillary wedge pressure

How CHF May Induce Central Sleep Apnea

- Elevated PCWP causes hyperventilation through pulmonary vagal irritant receptors
- CO₂ decreases
- Triggers apneas

CSA May Aggravate Cardiac Function by Increasing SNS Tone

SNS = sympathetic nervous system

CSA May Aggravate Cardiac Function by Increasing SNS Tone

SNS = sympathetic nervous system

CHF May Lead to OSA

- Increased filling pressures can result in pharyngeal edema, which can reduce cross-sectional area in the airway

CHF May Lead to OSA

- Increased filling pressures can result in pharyngeal edema, which can reduce cross-sectional area in the airway

Question #2

- In patients with heart failure who have both OSA and CSA, CSA becomes more predominant as sleep progresses through the night.

A. True
B. False

Question #2

- In patients with heart failure who have both OSA and CSA, CSA becomes more predominant as sleep progresses through the night.

A. True
B. False

Overnight Shift from OSA to CSA

- In cases where OSA and CSA are both present, CSA increases throughout the night
- CO2 decreases

Tkacova et al. Circulation.2001;103:238

Clinical Diagnosis

- Symptoms of daytime somnolence, snoring, witnessed apneas, generalized poor sleep
- Questionnaires such as the Berlin Questionnaire
- Class III/IV Heart Failure

Tkacova et al. Circulation.2001;103:238

From first to last quarter of night, there was significant reduction in proportion of obstructive (OB; from 68.5%(+/-)11.4% to 22.5%(+/-)7.2%) and increase in proportion of central (CN; from 31.5%(+/-)11.4% to 77.5%(+/-)7.2%) respiratory events

Inverse relationship between change in PtcCO2 and LECT from OSA to CSA in 8 patients whose SaO2 was measured by ear oximeter

PtcCO2 decreased from 42.6%(+/-)0.9 mm Hg during first quarter to 40.8%(+/-)0.9 mm Hg during last quarter of night

Overnight Shift from OSA to CSA-Proposed Associations

- Hypoxia
- Increased sympathetic tone
- Increased afterload
- Increase venous congestion in recumbent position
- DETERIORATION OF VENTRICULAR FUNCTION

Tkacova et al. Circulation.2001;103:238
OSA: Treatment

- Positional changes
- Surgery—for extreme cases (large tonsils)
- CPAP
- BiPAP

BiPAP = bilevel positive airway pressure; CPAP = continuous positive airway pressure

Surgical Interventions for OSA

- Uvuloplasty
- Laser-assisted uvuloplasty
- Radiofrequency volumetric tissue reduction
- Maxillary mandibular osteotomy
- Hyoid suspension
- Gastric reduction or bypass
- Tracheostomy

Treatment of OSA in HF

CPAP can treat OSA by
- Treating hypoxia
- Reducing nocturnal heart rate
- Reducing blood pressure
- Reducing LV afterload
- Improving the neural control of blood pressure and heart rate by increasing baroreflex sensitivity

CSA: Treatment

- Treat the heart failure
- Pharmacologic therapy
- CPAP/BiPAP/adaptive servoventilation
- Oxygen
- Pacing (?)
- CO₂ (?)

Heart Failure Treatment

- Diuretics
- ACE Inhibitor
- Beta Blocker
- Spironolactone
- When hemodynamic stability is unclear, consider a right heart catheterization

Theophylline

- Theophylline increases central respiratory drive and cardiac contractility
- In a small study in patients with HF and CSA, theophylline reduced AHIs, but did not improve LVEF
- Theophylline is not routinely recommended due to possibility of cardiac arrhythmias

LV = left ventricular
LVEF = left ventricular ejection fraction
Acetazolamide (Diamox®)
- The carbonic anhydrase inhibitor acetazolamide stimulates respiration by causing metabolic acidosis
- In a small study of HF and CSA, acetazolamide reduced the AHI (by 38%), daytime sleepiness, and fatigue
- Safety and efficacy remain to be demonstrated

Positive Airway Pressure: Treatment Modalities
- Continuous positive airway pressure (CPAP): remains continuous throughout the night; prevents airway obstruction
- Bilevel positive airway pressure (BiPAP): separate inspiratory and expiratory pressure; may improve tolerance
- Adaptive servoventilation (ASV): reacts to breathing patterns to cause a more stable respiratory pattern

Treatment of CSA in HF With CPAP
- CPAP reduces LV transmural pressure by increasing intrathoracic pressure
- Reduces LV preload
- Effects on CSA have been inconsistent
- Better effects with gradual up-titration to 8 to 12.5 cm H₂O
- CPAP has more favorable effects on the heart when AHI is decreased

Question # 3
- The CANPAP trial showed a survival benefit in patients with systolic heart failure receiving CPAP
 A. True
 B. False

CANPAP Trial
- 258 patients with heart failure (mean LVEF = 24.5 ± 7.7%)
- 128 patients received CPAP
- 130 received no CPAP
- Endpoints were survival, EF, exercise capacity, quality of life, and neurohormonal responses

CANPAP = Canadian Positive Airway Pressure (trial)
EF = ejection fraction

Effect of CPAP on number of apneas and hypopneas per h of sleep (A), mean and minimum nocturnal oxygen saturation (B and D), and LVEF (C).

Transplantation-free survival rates for CPAP and control groups over time.

CANPAP Results
- In patients with HF and sleep apnea, at 2 years there was no difference in survival without transplantation between those receiving and not receiving CPAP.
- There were beneficial findings such as a decrease in the AHI and improvements in EF and neurohormones.
- The clinical rate of events overall was less than expected leading to early cessation of the trial.

CANPAP Revisited
- Post-hoc evaluation of patients who had early suppression of CSA (at 3 months).
- Two groups: CPAP suppressed group to AHI < 15 and non-suppressed group.
- EF and transplant-free survival were improved in the group in which CPAP suppressed the AHI.

Adaptive Pressure Support Servoventilation: Right Pressures at the Right Time
- Offers 4 to 5 cm H₂O expiratory support and 8 cm H₂O end-inspiratory pressure.
- Can detect central apneas and increase inspiratory pressure to 15 cm H₂O.
- Can override central apneas.
- Allows lower expiratory pressure support than CPAP.

References

Adaptive Pressure Support Servoventilation (cont’d)

- 14 subjects with stable cardiac failure
- 4 treatment nights in random order during polysomnography:
 - Nasal oxygen (2 L/min)
 - CPAP (mean 9.25 cm H$_2$O)
 - BiPAP (mean 13.5/5.2 cm H$_2$O)
 - ASV largely at the default settings (mean pressure 7 to 9 cm H$_2$O)

Improvements in AHI With Different Treatments

- AHI: declined from 44.5 ± 3.4/h (SEM) untreated to 28.2 ± 3.4/h with oxygen
- CPAP: 26.8 ± 4.6/h
- BiPAP: 14.8 ± 2.3/h
- ASV: 6.3 ± 0.9/h

Oxygen

- Can reduce AHI by 50%
- Decreases urine norepinephrine
- No effect on daytime plasma norepinephrine
- No effect on quality of life
- No effect on daytime sleepiness
- Does not predictably improve cardiac function

CPAP versus O$_2$

- Both decreased AHI by 67%
- CPAP improved ventilatory efficiency and LVEF; O$_2$ did not

Treatment with CO$_2$?

- Can obliterate CSA
- No evidence of positive outcomes
- Can increase sympathetic tone
- Not currently recommended

EEG = electroencephalogram; EMG = electromyogram; EOG = electrooculogram
Atrial Overdrive Pacing

- In patients with bradycardia, atrial overdrive pacing can decrease apneas and hypopneas.
- These results have not been reproduced despite several attempts.

Biventricular Pacing and Obstructive Sleep Apnea

- 13 patients with HF and obstructive sleep apnea received CRT.
- AHI decreased from 40.9 ± 6.4 to 29.5 ± 5.9 events per hour with CRT (p = 0.04).
- BL EF was 22 ± 1.7% and increased post-CRT to 33.6 ± 2.0% (p < 0.05).

Biventricular Pacing and Obstructive Sleep Apnea

- The reduction in AHI with CRT correlated with a decrease in circulation time (r = 0.89; p < 0.001) with CRT.
- Increased pacing rate did not change AHI.
- CRT had no effect on sleep architecture or daytime symptom scores.

Biventricular Pacing and Cheyne-Stokes

- Improvement in congestive heart failure-related hyperventilation and hypocapnia.
- No change in circulation time, oxygen saturation, frequency of obstructive apneas or sleep quality.
- Conclusion: CRT is associated with a reduction in Cheyne-Stokes respiration.

Biventricular Pacing and Central Sleep Apnea

- 24 patients EF 24 ± 6%, and LBBB (QRS duration 173 ± 22 ms) received a CRT device.
- 14 patients had CSA (AHI >5/h),
- 10 patients had an AHI <5/h without CSA.
- In patients with CSA, CRT decreased AHI (19.2 ± 10.3 to 4.6 ± 4.4, p < 0.001) PSQI (10.4 ± 1.6 to 3.9 ± 2.4, p < 0.001) and SaO2 increased (84 ± 5% to 89 ± 2%, p < 0.001).

Biventricular Pacing and Central Sleep Apnea

- In patients without CSA, there was no significant change in AHI, PSQI, and SaO₂ min.
- Conclusion: CRT decreases CSA and improves sleep quality in patients with HF and sleep-related breathing disorders.

Biventricular Pacing Conclusions

- Evidence to support improvement in OSA with biventricular pacing
- Evidence for a decrease in circulation time
- Improvements in CSA/CSR with biventricular pacing
- These findings support the role of HF in both CSA and OSA

Conclusion

- Use a low threshold when looking for sleep apnea in heart failure patients
- Both sleep apnea and heart failure can exert adverse effects on each other
- Aggressive intervention in the realms of both heart failure and sleep apnea is critical
- More study is required to identify best treatment patterns